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Technological developments, especially in mass
spectrometry and bioinformatics, have revealed
that living cells contain thousands rather than
dozens of different lipids [for classification and
nomenclature, see Fahy et al. (Fahy et al.,
2009)]. Now, the resulting questions are what is
the relevance of each of these unique molecules
for the cell and how do cells use lipids for their
vital functions? The answer requires an

integrative approach – cellular lipidomics –
which addresses first the distribution of all lipids
between the various organelle membranes and
then their local organization within each
membrane. To understand lipid homeostasis and
its dynamics, one has to study the localized
metabolism of lipids, their transport within and
between the various membranes, and the sensors
and effectors that govern these processes. In
terms of function, above all, we need to
understand the physical behavior of complex
lipid mixtures and their effect on local protein
structure, organization and function. Finally, in
the course of evolution, many lipids and lipid
metabolites have acquired key functions in the
signaling networks that wire the cell, by binding
to cognate receptors and by recruiting
proteins to specific membranes. The
accompanying poster describes the lipid content
of the various organelle membranes, illustrates
lipid localization and dynamics in various
subcellular locations, and explains the structure

of lipids and their biosynthetic pathways.
Below, we highlight additional issues that are
important in lipid cell biology, and aim to
provide a framework and a timely update for
lipid systems biology.

Lipid self-organization and subcellular
distribution
Bacteria, archaea and eukaryotes share glycerol
as the backbone of most of their lipids. The
typical bacterial phospholipids are phos-
phatidylserine (PS), phosphatidylethanolamine
(PE), phosphatidylglycerol (PG) and cardiolipin
(CL), which are also found in eukaryotes. PG
and CL are synthesized in and confined to
mitochondria (see Poster). Mitochondria also
harbor the (bacterial) enzyme PS-decarboxylase
(PSD), which synthesizes half of the cellular PE.
Phosphatidylcholine (PC) and phosphatidy l -
inositol (PI) are the other major eukaryotic
glycerophospholipids. Owing to its two fatty
acyl chains and a large polar head, PC has a

(See poster insert)
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Abbreviations: ABC, ATP-binding cassette; BMP, bis(monoacylglycero)phosphate; CDP, cytidine diphosphate; 
Cer, ceramide; CERT, ceramide transfer protein; cho, choline; Chol, cholesterol; CL, cardiolipin; DG, diacylglycerol; 
ER, endoplasmic reticulum; etn, ethanolamine; ffa, free fatty acid; GalCer, galactosylceramide; gangliosides, 
glycosphingolipids containing sialic acid; Gb3, globotriaosylceramide; Gg3, gangliotriaosylceramide; GL, glycerolipid; 
GlcCer, glucosylceramide; GM3, sialosyl lactosylceramide; iGb3, isoglobotrihexosylceramide; LacCer, 

lactosylceramide; NPC, Niemann-Pick type C protein; PA, phosphatidic acid; PC, phosphatidylcholine; 
PDME, phosphatidyldimethylethanolamine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; 
PGP, phosphatidylglycerol phosphate; PI, phosphatidylinositol; PMME, phosphatidylmonomethylethanolamine; 
PS, phosphatidylserine; SCAP, SREBP-cleavage-activating protein; SL, sphingolipid; SM, sphingomyelin; 
Sph, sphingoid base; SREBP, sterol regulatory element binding protein.
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cylindrical shape. Because the entropy is highest
when the lipid tails are turned away from water
and water molecules have maximum freedom
(the ‘hydrophobic effect’), PC molecules
assemble into a bilayer. The typical PC carries
one saturated and one unsaturated chain. It
yields a fluid (‘liquid crystalline’) membrane
with many characteristics of biomembranes.
However, biomembranes typically contain five
to ten major lipid classes (see Poster), which are
needed for processes such as vesicle fusion
and fission, membrane sorting and signal
transduction.

Most PE molecules found in biological
membranes are cone shaped and don’t form
lipid bilayers by themselves. The non-bilayer
propensity of PE is essential for the functional
embedding of membrane proteins and for
processes such as membrane fusion and fission.
Under conditions of charge neutralization
(divalent cations or high salt), mitochondrial CL
also acquires a preference for a non-bilayer
configuration. Inactivation of CL synthase and
mitochondrial PSD in yeast is synthetically
lethal (Gohil et al., 2005), indicating a
requirement for mitochondrial non-bilayer
lipids. The non-bilayer propensity of PE and CL
depends on the length and level of unsaturation
of their acyl chains. The acyl chain composition
is modulated by acyl chain exchange, which is
catalyzed by remodeling enzymes. The new
developments in mass spectrometry have
enabled us to monitor lipid remodeling in living
cells (de Kroon, 2007) and also allowed rapid
progress in the area of ether lipids. Up to 50% of
glycerolipids contain ether-linked chains, but
their functions remain largely unknown (Lessig
and Fuchs, 2009).

In addition to the glycerol-based
phospholipids, eukaryotes invariably possess
sphingolipids and sterols. Sphingolipids usually
contain a long to very long saturated fatty acid
(C16–C32) with an amide linkage to the
sphingoid base (Poster). Variations such as C2-
hydroxylation and C15-unsaturation are not
uncommon. Sphingolipids generally adopt a
solid gel phase, but are fluidized by sterols,
which preferentially interact with them in the
membrane. Sphingolipids and sterols are
enriched in the plasma membrane and in
endosomes. They render these membranes
exceptionally sturdy. PC and PI are enriched in
the endoplasmic reticulum (ER) [see Poster;
diameters reflect contribution to total cellular
lipid; calculated from Zambrano et al.
(Zambrano et al., 1975) and Griffiths et
al. (Griffiths et al., 1989)]. Similar to the
bacterial membrane, the thin and flexible ER is
involved in the insertion of membrane and
secretory proteins. In addition to the differences
between organelles, the two leaflets of

(post-)Golgi membrane bilayers also have
different lipid compositions (Bretscher, 1972;
Verkleij et al., 1973; Simons and van Meer,
1988) (see Poster). The sphingolipids are
synthesized on the lumenal surface of the Golgi
membrane and are found on the outside of the
plasma membrane, whereas the aminophospho-
lipids PS and PE are actively concentrated in the
cytosolic leaflet (see below). Because of the
preferential interaction of cholesterol with
sphingolipids, it should be enriched in the non-
cytosolic leaflet of the membrane. However,
experimental evidence instead suggests a
very high ratio between cholesterol and
phospholipids in the cytosolic leaflet (Mondal et
al., 2009). This finding is presently difficult to
interpret in physical terms.

Lipid transport
Flippases stabilize transbilayer lipid
asymmetry
In pure lipid membranes, the polar head group of
the regular phospholipids does not readily pass
through the hydrophobic membrane interior.
This is also true for both the erythrocyte
membrane, for which the half-time of
translocation across the bilayer for PC was
found to be greater than 10 hours, and
(post-)Golgi membranes in nucleated cells. By
contrast, the various phospholipids move
rapidly (in the order of seconds) across the ER
membrane in an energy-independent process
mediated by (so far) unknown proteins (Sanyal
and Menon, 2009).

Lipid asymmetry across biomembranes is
dynamic (Seigneuret and Devaux, 1984). Each
(post-)Golgi membrane contains P4-ATPases,
members of the cation-transporting P-type
ATPase family. P4-ATPases translocate the
aminophospholipids PS and PE towards
the cytosolic leaflet (Tang et al., 1996) [see
Poster, structure of a related pump (cf. Pedersen
et al., 2007)], and are generally termed
‘flippases’. The activation of so-called
‘scramblase’ activity allows lipid mixing
between the leaflets and exposes PS on the cell
surface (Bevers and Williamson, 2010). This
occurs late in apoptosis, after which PS is
recognized by a PS receptor (Wong et al., 2010)
and the apoptotic cell undergoes phagocytosis.
In addition, PS exposure on blood cells or
platelets signals blood coagulation. Flippases
maintain lipid asymmetry, but the net
translocation of lipid mass from one bilayer
leaflet to the other also leads to curvature of the
membrane. This possibly drives the budding of
transport vesicles in post-Golgi vesicle
trafficking (Leventis and Grinstein, 2010).
Lipids without sizeable head groups, such as
cholesterol, diacylglycerol (DG), ceramide and
fatty acids (ffa) in their protonated form, readily

translocate spontaneously. Nevertheless, the
export of lipoprotein-derived cholesterol from
lysosomes requires the Niemann-Pick disease
type C protein 1 (NPC1) in the lysosomal
membrane. Instead of acting as a flippase, NPC1
probably inserts low-density lipoprotein (LDL)-
derived cholesterol from the lumen into the
surrounding membrane across the glycocalyx,
the protective layer of glycans on the inner
surface of the lysosomal membrane (see Poster)
(Kolter and Sandhoff, 2009). This is then
followed by its spontaneous transmembrane
translocation. NPC1 might also translocate
lumenal sphingoid bases, which are positively
charged at lysosomal pH, across the lysosomal
membrane (Lloyd-Evans et al., 2008).

A number of ATP-binding cassette (ABC)
transporters move lipids away from the cytosol
(see Poster). However, they don’t deposit the
lipids into the non-cytosolic membrane leaflet
using a reversed flippase (‘floppase’)
mechanism. In most cases, ABC transporters
extrude the lipid substrate onto acceptors
outside the membrane (van Meer et al., 2006).
Glucosylceramide, the only glycosphingolipid
synthesized on the cytosolic surface of
the Golgi, requires a floppase to be able to
reach the Golgi lumen (D’Angelo et al., 2007),
where it is converted into a higher glycosphin-
golipid (see Poster). We observed no direct
translocation across the Golgi membrane.
Instead, glucosylceramide reached the Golgi
lumen through the ER, mediated by the gluco-
sylceramide-binding protein FAPP2 (Halter et
al., 2007). Interestingly, the related galactosyl-
ceramide is synthesized in the ER (Sprong et al.,
1998). Both glycosphingolipids can also reach
the cytosolic side of the plasma membrane,
across which they can be translocated (Halter et
al., 2007), possibly by ABCA12, a putative glu-
cosylceramide exporter in the skin (Jiang et al.,
2009).

Lipid sorting in vesicular pathways by
lateral segregation in domains
How do cells generate and maintain the
differences in lipid composition between their
organelles? Lipids rapidly diffuse laterally in the
membrane plane, typically 1 m2 per second.
Therefore, the budding and fusion of membrane
vesicles with a typical surface area of 0.02 m2

(which occurs in the order of seconds) should
mix the lipids of the organelles along the
vesicular pathways. However, physical
differences between the glycerolipids and
sphingolipids make them segregate into two
distinct fluid phases in the presence of 5–50
mol% cholesterol, its biological concentration
range (Marsh, 2009). In (post-)Golgi
membranes, domains of different lipid
composition are targeted into separate carrier
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vesicles with unique protein labels to address
them to, for example, the ER and plasma
membrane (see Poster). This segregation of
lipids and proteins forms the basic sorting
mechanism by which cells maintain the unique
lipid composition of their membranes (Simons
and van Meer, 1988; van Meer et al., 2008).
Sophisticated cell fractionation and lipidome
analysis has shown that retrograde Golgi-
derived vesicles, identified by their COPI coat,
are enriched in ER lipids (Brügger et al., 2000).
Anterograde vesicles from the trans-Golgi
network (TGN) are enriched in sphingolipids
and sterols (Klemm et al., 2009). When, during
evolution, cells acquired the ability to
synthesize sphingolipids and sterols, they also
developed their endomembrane system (Freilich
et al., 2008; Desmond and Gribaldo, 2009). This
suggests that lipid-based sorting is a
fundamental eukaryotic property. Many
molecular details remain unclear, for example,
how membrane proteins concentrate in a given
domain. On the plasma membrane,
sphingolipid–cholesterol nanodomains with
their specific proteins, termed lipid rafts,
supposedly function as transient signaling
platforms. Their size and life-time are subject of
ongoing investigations.

Transfer proteins and contact sites guide
lipid monomers through the cytosol
Various families of cytosolic proteins can bind
and solubilize lipid monomers. Some of these
belong to the nuclear receptor family of
transcription factors. Others transfer
(phospho)lipids between membranes. Ceramide
transfer protein (CERT) is required for
transporting newly synthesized ceramide from
the ER to the trans-Golgi, where it is
metabolized to sphingomyelin (SM) (see
Poster). Golgi synthesis of glucosylceramide
was shown to be CERT independent (Hanada
et al., 2003) (cf. Halter et al., 2007). CERT binds
to a protein on the ER and to the signaling lipid
phosphatidylinositol 4-phosphate (PI4P) on the
trans-Golgi, probably at contact sites between
these organelles. The transport activity of
CERT, and thereby SM synthesis, is regulated
by the concentration of PI4P (see below) and the
phosphorylation state of CERT (Hanada et al.,
2003). CERT-related proteins possessing the
same ER and Golgi binding sites bind
oxysterols, whereas another type of oxysterol-
binding protein was found to be located at the
ER–endosome and Golgi–endosome interfaces
(Raychaudhuri and Prinz, 2010). Contact sites
have been found between the ER and
mitochondria, Golgi, the plasma membrane
and lipid droplets. Their molecular
structure and their function in transporting
lipids, proteins and ions are the subject of

intense research. The first protein complexes at
ER–mitochondria contact sites have been
identified (de Brito and Scorrano, 2008;
Kornmann et al., 2009). They indeed appear to
be involved in the transport of PS from the ER
to mitochondria and of PE resulting from PS
decarboxylation back to the ER (see Poster).
The finding that a protein of the mitochondrial
protein import machinery affects the
mitochondrial CL content (Kutik et al., 2008)
will further help to resolve the molecular
mechanisms that regulate mitochondrial lipid
composition. The relationship between ER and
lipid droplets, especially the role of the ER in
droplet biogenesis, and the organization of the
enzymes of lipid metabolism at the droplet
surface (Poster) are not yet understood
(Robenek et al., 2009).

Lipids as primary and secondary
messengers: topology
During evolution, cells started to use specific
lipids at specific locations for signaling
purposes. First of all, the wide variety of
glycosphingolipid structures on the cell surface,
now evident from detailed mass spectrometric
profiling (Li et al., 2010), impose specificity on
interactions with glycans or lectins on other cells
or in the extracellular matrix. They can also
regulate the activation of the insulin and
epidermal growth factor receptors (Bremer et
al., 1986) and of integrins by modulating their
organization in lipid rafts (Pike et al., 2005;
Regina Todeschini and Hakomori, 2008).
Various glycosphingolipids are targets of toxins,
viruses, bacteria and parasites. Second, a
dedicated complex regulatory system of lipid
kinases and phosphatases provides individual
organelles with unique derivatives of PI that are
phosphorylated at one, two or three positions of
the inositol ring: the phosphoinositides (see
Poster). Examples are PI4P in the Golgi,
phosphatidy linositol 3-phosphate (PI3P) in
endosomes and phosphatidylinositol (4,5)-
bisphosphate [PI(4,5)P2] in plasma membranes
(Di Paolo and De Camilli, 2006). The phospho-
inositides on the cytosolic surface recruit
organelle-specific effector proteins in vesicle
trafficking and also in signal transduction.
Inside the nuclear matrix, phosphoinositides are
embedded in protein signaling complexes
(Barlow et al., 2009).

The secondary messengers ceramide and DG,
when produced by phospholipases at the plasma
membrane, recruit cytosolic kinases and
phosphatases. Ceramide and DG levels regulate
apoptosis (Bartke and Hannun, 2009) and Golgi
transport, respectively. Phospholipases A2, C
and D, which produce lysophospholipids plus
fatty acids, DG and phosphatidic acid (PA),
respectively, are required for budding and fusion

at the Golgi (Asp et al., 2009; Judson and
Brown, 2009; Riebeling et al., 2009; San Pietro
et al., 2009) and probably other organelles. A
number of more water-soluble lipids have been
found to bind to cognate receptors; for instance,
sphingosine-1-phosphate (S1P) and probably
lysophosphatidic acid (LPA) are secreted by
cells via ABC transporters (Takabe et al., 2010)
and subsequently activate S1P and LPA
receptors on the cell surface. They are involved
in multiple aspects of cell proliferation and
differentiation (Fyrst and Saba, 2010; Tigyi,
2010). Arachidonic acid, its derivatives and
oxysterols are freely mobile in the cytosol
and activate nuclear receptors that affect
transcription. Finally, cells also employ sensor
and effector systems to regulate the lipid
composition of their membranes. One example
is the sterol regulatory element binding protein
(SREBP) system. When the cholesterol
concentration in the ER gets below 5 mol%
(Radhakrishnan et al., 2008), the sterol-sensing
protein Insig is released from a complex with
SREBP and SREBP-cleavage-activating
protein (SCAP). This allows transport of
SREBP–SCAP to the Golgi. There, the N-
terminal cytosolic tail of SREBP is cleaved,
yielding a transcription factor that regulates the
expression of enzymes involved in cholesterol
(i.e. SREBP-2) and fatty acid (i.e. SREBP-1)
metabolism (Brown and Goldstein, 2009) (see
Poster). Moreover, an ER member of the SM
synthase family regulates the cellular ceramide
concentration (and thereby apoptosis) and is a
candidate ceramide sensor (Vacaru et al., 2009).
Because oxysterols are relatively water soluble,
they readily transfer between membranes.
Therefore, oxysterol-binding proteins might
function as sensors rather than transporters
(Raychaudhuri and Prinz, 2010). A role as
sensors in regulating vesicular transport has
been proposed for PI-transfer proteins in yeast
(Mousley et al., 2007).

Perspectives
One enigma in lipid biology is the dynamic
organization of cholesterol. Although it can
spontaneously move across and between
membranes, many proteins have been found to
stimulate its movement. Its high affinity for
sphingolipids contrasts with the experimental
results regarding its transbilayer organization. It
also remains unclear how cells move domains of
sphingolipids and cholesterol, which have an
increased resistance against bending, into highly
curved budding Golgi vesicles. Moreover,
biophysicists do not see membrane proteins
move into such ‘ordered domains’ in artificial
reconstituted membranes, whereas they do in
the cell. The molecular mechanism of flippases
and their lipid specificity are not yet understood
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nor is intermembrane lipid transport through
membrane contact sites. The biogenesis of lipid
droplets and their relationship with the ER
constitutes another unresolved issue. Finally, we
lack a basic understanding of how and why our
cells synthesize the multitude of lipid species
that we now observe with our sharpened
analytical tools. We don’t understand their
impact on membrane structure and function, and
we probably miss half of the functions that are
exerted by lipids in signal transduction and
homeostasis because they occur in minor
amounts.

Many enzymes are involved in the synthesis,
remodeling and conversion of cellular lipids,
and their intermembrane and intramembrane
transport. It is a challenge to unravel lipid
homeostasis at the systems level; stable isotope
labeling and mass spectrometry might allow us
to do just that. A bigger challenge is to find out
how lipid homeostasis ties in with all other
protein-based systems in the cell to regulate cell
physiology at large. Mapping the lipids is only a
start!
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