
The discovery of lysosomes by Christian de Duve1 
more than 60 years ago marked the birth of a new 
research field and earned its trailblazer a Nobel Prize 
in Physiology or Medicine in 1974. The delivery of 
heterogenic intracellular material to lysosomal diges-
tion was termed ‘autophagy’ (Greek for ‘self-​eating’) 
by de Duve as early as 1963, but consequent research 
on autophagy did not receive much attention for more 
than 30 years. Major achievements at that period 
focused on the tight regulation of autophagy by nutri-
ent availability2, while the physiological relevance and 
manner of lysosomal delivery remained unknown. 
Then, Yoshinori Ohsumi’s laboratory conducted a 
genetic screen to dissect the process in yeast3, identify-
ing 15 autophagy-​related proteins (ATGs) essential for 
autophagic delivery of cargo to the vacuole (the coun-
terpart of the lysosome in yeast) (Fig. 1; Table 1). From 
that point onwards, the field explosively increased in 
knowledge, and the fundamental physiological impor-
tance of autophagy for human health and disease was 
uncovered. In 2016, Ohsumi was awarded a Nobel 
Prize in Physiology or Medicine for his discovery of 
mechanisms of autophagy.

We now know that autophagy is an adaptive pro-
cess that occurs in response to different forms of 
stress, including nutrient deprivation, growth factor 
depletion, infection and hypoxia. We also understand 
much better how the autophagic machinery is regu-
lated and selects cargo and how its perturbation affects 
cellular and organismal function. The main function 
of autophagy is to provide nutrients for vital cellular 
functions during fasting and other forms of stress; 
thus, autophagy has long been considered a nonselec-
tive process. However, autophagy was more recently 
shown to selectively eliminate unwanted, poten-
tially harmful cytosolic material, such as damaged 

mitochondria or protein aggregates (a process known 
as selective autophagy; see Box 1), thereby acting as a 
major cytoprotective system. Intriguingly, autophagy 
is also used by cells to secrete cytoplasmic constitu-
ents. Accordingly, autophagic activity modulates many 
pathologies, including neurodegeneration, cancer and 
infectious diseases, thus also placing autophagy under 
the spotlight of pharmacologists and clinicians.

In this Review, we summarize the molecular mech-
anisms and regulation of mammalian autophagy and 
describe their involvement in several pathological condi-
tions. We also discuss current strategies, limitations and 
challenges involved in targeting the pathway in cancer 
and neurodegenerative diseases where most knowledge 
has accumulated over the past years.

Mechanism of autophagy
Induction of autophagy results in recruitment of 
ATGs to a specific subcellular location termed the 
phagophore assembly site (PAS) and nucleation of an 
isolation membrane that forms a cup-​shaped structure 
termed the phagophore (Fig. 1). Gradual elongation of 
the curved isolation membrane results in expansion  
of the phagophore into a sphere around a portion of  
the cytosol. The isolation membrane eventually seals 
into a double-​membraned vesicle, termed the auto-
phagosome, thereby trapping the engulfed cytosolic 
material as autophagic cargo. After clearance of 
most ATGs and delivery along microtubules to the 
lysosome, the outer membrane of the autophago-
some fuses with the lysosomal membrane to form an 
autolysosome. This fusion results in the release of a 
single-​membrane autophagic body into the lysoso-
mal lumen, which is followed by the degradation of 
the autophagic body together with its cargo by the 
autolysosomal hydrolytic milieu4–6.
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The autophagic pathway and core autophagy proteins. 
The so-​called core ATG proteins essential for autopha-
gosome formation and lysosomal delivery of autophagic 
cargo are grouped by their functional and physical inter-
actions into five complexes7 (see also Table 1): (i) the 
ULK1 (Unc-51-like kinase 1) complex — the serine/thre-
onine protein kinase ULK1, RB1-inducible coiled-​coil 
protein 1 (FIP200; also known as RB1CC1), ATG13 and 
ATG101; (ii) ATG9 — the sole integral, transmembrane 

core ATG; (iii) the class III PI3K (PI3KC3) complex — 
the catalytic subunit vacuolar protein sorting 34 (VPS34) 
that converts PI into PI-3-phosphate (PI3P), Beclin 1 
and general vesicular transport factor p115, joined by 
ATG14 in PI3KC3 complex I (PI3KC3–C1) or UV radi-
ation resistance-​associated gene protein (UVRAG) in 
complex II (PI3KC3–C2); (iv) WIPI (WD repeat domain 
phosphoinositide-​interacting) proteins and their func-
tional, optionally physical interaction partner ATG2; 
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Fig. 1 | Overview of the autophagy process. Signals that activate the 
autophagic process (initiation) typically originate from various conditions 
of stress, such as starvation, hypoxia, oxidative stress, protein aggregation, 
endoplasmic reticulum (ER) stress and others.  The common target of these 
signalling pathways is the Unc-51-like kinase 1 (ULK1) complex (consisting 
of ULK1, autophagy-​related protein 13 (ATG13), RB1-inducible coiled-​coil 
protein 1 (FIP200) and ATG101), which then triggers nucleation of the 
phagophore by phosphorylating components of the class III PI3K (PI3KC3) 
complex I (consisting of class III PI3K , vacuolar protein sorting 34 (VPS34), 
Beclin 1, ATG14, activating molecule in Beclin 1-regulated autophagy 
protein 1 (AMBRA1) and general vesicular transport factor (p115)), which in 
turn activates local phosphatidylinositol-3-phosphate (PI3P) production at 
a characteristic ER structure called the omegasome. PI3P then recruits the 
PI3P effector proteins WD repeat domain phosphoinositide-​interacting 
proteins (WIPIs; here WIPI2) and zinc-​finger FYVE domain-​containing 
protein 1 (DFCP1) to the omegasome via interaction with their PI3P-​binding 
domains. WIPI2 was recently shown to bind ATG16L1 directly , thus 
recruiting the ATG12~ATG5–ATG16L1 complex that enhances the 
ATG3-mediated conjugation of ATG8 family proteins (ATG8s), including 
microtubule-​associated protein light chain 3 (LC3) proteins and 

γ-​aminobutyric acid receptor-​associated proteins (GABARAPs) to 
membrane-​resident phosphatidylethanolamine (PE), thus forming the 
membrane-​bound, lipidated forms; for example, in this conjugation 
reaction, LC3-I is converted into LC3-II — the characteristic signature of 
autophagic membranes. ATG8s not only further attract components of the 
autophagic machinery that contain an LC3-interacting region (LIR) but also 
are required for elongation and closure of the phagophore membrane. 
Moreover, in selective autophagy , LC3 is critically involved in the 
sequestration of specifically labelled cargo into autophagosomes via LIR-​
containing cargo receptors. Several cellular membranes, including the 
plasma membrane, mitochondria, recycling endosomes and Golgi complex, 
contribute to the elongation of the autophagosomal membrane by 
donating membrane material (part of these lipid bilayers is delivered by 
ATG9-containing vesicles, but the origin of the rest of the lipid bilayer is 
currently unknown). Sealing of the autophagosomal membrane gives rise to 
a double-​layered vesicle called the autophagosome, which matures 
(including stripping of the ATG proteins) and finally fuses with the lysosome. 
Acidic hydrolases in the lysosome degrade the autophagic cargo, and 
salvaged nutrients are released back to the cytoplasm to be used again by 
the cell. Ub, ubiquitin.
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Table 1 | Key autophagic factors and their regulation

Protein Function Mechanisms of regulation

Initiation and phagophore nucleation

ULK1 and ATG1 Serine/threonine kinase; initiates autophagy by 
phosphorylating components of the autophagy 
machinery

Stress and nutrients (via mTORC1, AMPK 
and LKB1); TFEB and several miRNAs

FIP200 Component of ULK complex (possibly 
scaffolding function)

ULK1 and miRNAs

ATG13 Adaptor mediating the interaction between 
ULK1 and FIP200; enhances ULK1 kinase activity

ULK1, mTORC1 and AMPK

ATG101 Component of ULK complex; recruitment of 
downstream ATG proteins

ULK1

VPS34 Catalytic component of PI3KC3–C1; generates 
PI3P in the phagophore and stabilizes the ULK 
complex

AMPK , ULK1 and p300 (acetylation)

Beclin 1 Promotes formation of PI3KC3–C1 and 
regulates the lipid kinase VPS34

Activation: AMPK , ULK1, MAPKAPK2, 
MAPKAPK3, DAPK and UVRAG; 
inhibition: BCL-2, AKT and EGFR

ATG14 PI3KC3–C1 targeting to the PAS and expanding 
phagophore

PIPKIγI5 and mTORC1

ATG9 Delivery of membrane material to the 
phagophore

ULK1 complex

WIPI2 PI3P-​binding protein that recruits ATG12~ATG5–
ATG16L to the phagophore; retrieval of ATG9 
from early autophagosomal membranes

TFEB (positive transcription regulator) 
and ZKSCAN3 (negative transcription 
regulator)

Phagophore expansion

ATG4 Cysteine protease that processes pro-​ATG8s; 
also, deconjugation of lipidated LC3 and ATG8s

ULK1 and ROS

ATG7 E1-like enzyme; activation of ATG8; conjugation 
of ATG12 to ATG5

miRNAs

ATG3 E2-like enzyme; conjugation of activated ATG8s 
to membranal PE

miRNAs

ATG10 E2-like enzyme that conjugates ATG12 to ATG5 miRNAs

ATG12~ATG5–ATG16L E3-like complex that couples ATG8s to PE CSNK2

PE-​conjugated ATG8s Scaffold for assembly of the ULK1 complex; 
supports membrane tethering and hemifusion 
events for phagophore expansion

ULK1, PKA , ATG4 and mTOR

ATG9 Delivery of membrane material to the 
phagophore

ULK1

Cargo sequestration

Ubiquitin Cargo labelling PINK (phosphorylation)

Cardiolipin and 
ceramide

Cargo labelling Phosphorylation

p62 Autophagy receptor ULK1 and TBK1

OPTN Autophagy receptor TBK1

NBR1 Autophagy receptor TBK1

NDP52 Autophagy receptor TBK1

PE-​conjugated LC3 Interaction with autophagy receptors; also 
phagophore expansion and sealing

ULK1, PKA , ATG4 and mTOR

Membrane sealing

LC3s and GABARAPs Unclear Unclear ; might involve phosphorylation 
and acetylation events

Autophagosome maturation

ATG4 Removal of ATG8s from the surface of the 
autophagosome

Unknown

PE-​conjugated LC3s 
and GABARAPs

Linking the autophagosome to microtubule-​
based kinesin motor

Unclear ; might involve phosphorylation 
and acetylation events

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATuRe RevIeWS | MOleCulAr Cell BiOlOgy

R e v i e w s

	  volume 19 | JUNE 2018 | 351



serine/threonine kinase mTOR13,14. mTOR is found 
in two distinct protein complexes, mTORC1 and 
mTORC2, but only mTORC1 directly regulates auto-
phagy15. In high-​nutrient conditions, ATG13 and 
ULK1 are both directly bound and phosphorylated by 
mTORC1 and remain inactive in this phosphorylated 
form16. Upon starvation, mTORC1 sites on ULK1 are 
dephosphorylated and ULK1 dissociates from mTORC1. 
Concomitantly, ULK1 undergoes autophosphorylation, 
followed by phosphorylation of ATG13 and FIP200. 
ULK1 is activated upon dissociation from mTOR after 
autophosphorylation, followed by phosphorylation of 
ATG13 and FIP200 by ULK1 (refs16,17). Another key reg-
ulator of autophagy is TFEB (transcription factor EB), 
which is a master transcription factor controlling cellular 
clearance. Like ATG13 and ULK1, TFEB is negatively 
regulated by mTORC1 and released upon starvation to 
regulate the expression of genes involved in lysosomal 
biogenesis and lipid catabolism18. TFEB family members 
control autophagy by mTORC1 lysosomal recruitment 
and activity by directly regulating expression of the 
mTOR-​activating Rag GTPase complex component Ras-​
related GTP-​binding protein D (RagD)19, thus providing 
a feedback circuit to balance the cellular metabolic state.

Autophagy may also be induced upon declining 
cellular energy levels, as in glucose starvation, sensed 
through the ATP:AMP ratio by cell homeostasis regula-
tory kinases 5′ AMP-​activated protein kinase (AMPK) 
and serine/threonine-​protein kinase STK11 (LKB1)20. 
LKB1 activates autophagy through AMPK by inhi-
bition of mTORC1 indirectly via activation of the 
TSC2 (tuberous sclerosis 2) complex and possibly directly by 
phosphorylation of Raptor21. As TSC2 is regulated by inter-
action with WIPI3 and FIP200 (ref.22), involvement of the 
LKB1–AMPK–TSC2 axis in CREB-​regulated transcription 
coactivator 1 (TORC1; also known as CRTC1) regulation 
provides a feedback control on autophagy induction. 
Because TSC2 is regulated by WIPI3 and FIP200, involve-
ment of LKB1-AMPK-TSC2 axis in mTORC1 regulation 
allows coordination between autophagy induction and 
autophagosome formation. AMPK-​mediated induction 
of autophagy can also bypass mTOR by directly inducing 
phosphorylation of ULK1, VPS34 and Beclin 1 (ref.23).

Contact sites
Interorganellar connections 
with distinct biochemical 
properties and a characteristic 
set of proteins that function as 
signalling hot spots.

TSC2 (tuberous sclerosis 2) 
complex
Complex that is part of TSC 
that acts as a GTPase 
accelerating protein (GAP) for 
GTP-​binding protein RHEB; 
because GDP-​loaded RHEB is 
unable to activate mTORC1, 
TSC effectively shuts off 
mTORC1 signalling.

Raptor
Scaffold protein unique to 
mTORC1 (not present in 
mTORC2); binds substrates as 
well as regulators

and (v) two ubiquitin (Ub)-like proteins and covalent 
conjugation targets (and their activation and conjugation 
machinery, see below): the Ub-​like ATG12 conjugates 
with ATG5 (ATG12~ATG5), where ~ denotes conjuga-
tion, which further establishes a complex with ATG16L 
(ATG12~ATG5–ATG16L), and Ub-​like ATG8 family 
proteins (ATG8s), which include the light chain 3 (LC3) 
subfamily (also known as microtubule-​associated pro-
teins 1 A/1B LC3, MAP1LC3): LC3A, LC3B, LC3C and 
the γ-​aminobutyric acid receptor-​associated protein 
(GABARAP) subfamily (GABARAP, GABARAPL1, 
GATE-16/GABARAPL2), which form conjugates with 
membrane-​resident phosphatidylethanolamine (PE).

Induction and phagophore nucleation. Phagophores are 
nucleated at the PAS on endoplasmic reticulum (ER)-
emanating membrane domains termed ‘omegasomes’ 
that are PI3P-​rich and marked by the PI3P-​binding 
protein zinc-​finger FYVE domain-​containing protein 1  
(DFCP1; also known as ZFYVE1). However, ER-​
mitochondria and ER-​plasma membrane contact sites8,9 
as well as other organelles, such as the Golgi complex, 
plasma membrane and recycling endosomes, were 
also recently implicated as PASs (see recent reviews4), 
possibly reflecting different experimental tools or 
the contribution of different intracellular membrane 
sources to autophagosome formation, which may be cell 
dependent and/or context dependent. Nucleation of the 
phagophore membrane is an intricate process, and its 
molecular details are still not completely understood. 
According to current understanding, phagophore for-
mation involves the cooperative PAS formation, activa-
tion of the ULK1 complex and the PI3KC3–C1, possibly 
in concert with the activation of localized PI synthase. 
These events are accompanied by the recruitment of 
ATG9-containing vesicles generated by the secretory 
pathway to the PAS, which may deliver additional lipids 
and proteins contributing to membrane expansion10–12. 
Accordingly, activation of the ULK1 and PI3KC3–C1 are 
immediate responses to autophagy induction.

The most characterized trigger for induction of 
autophagy is deprivation of amino acids, which results 
in inhibition of the master cell growth regulator 

Protein Function Mechanisms of regulation

Fusion with the lysosome

PE-​conjugated LC3s 
and GABARAPs

Mediates autophagosome–lysosome fusion 
upon phosphorylation through PLEKHM1  
and HOPS

STK3 and STK4

ATG14 Promotes SNARE-​driven membrane fusion Unknown

Rab GTPase RAB7 Unclear Unknown

ATG, autophagy-​related protein; AMPK , 5′ AMP-​activated protein kinase; CSNK2, casein kinase 2; DAPK , death-​associated protein 
kinase; EGFR , epidermal growth factor receptor ; FIP200, RB1-inducible coiled-​coil protein 1; GABARAP, γ-​aminobutyric acid 
receptor-​associated protein; HOPS, homotypic fusion and protein sorting; LC3, light chain 3; LKB1, liver kinase B1; MAPKAPK, 
MAPK-​activated protein kinase; miRNA , microRNA ; NBR1, neighbour of BRCA1 gene; NDP52, nuclear dot protein 52; OPTN, 
optineurin; p62, also known as SQSTM1; p300, histone acetyltransferase 300; PAS, phagophore assembly site; PE, phosphatidyleth-
anolamine; PI3P, phosphatidylinositol-3-phosphate; PINK , PTEN-​induced putative kinase 1; PIPKIγi5, type Iγ PIP kinase isoform 5; 
PI3KC3, class III PI3K; PKA , protein kinase A ; PLEKHM1, pleckstrin homology domain-​containing protein family member 1; RAB, 
Ras-​related protein; ROS, reactive oxygen species; STK, serine/threonine protein kinase; TBK1, TANK-​binding kinase 1; TFEB, 
transcription factor EB; ULK1, Unc-51-like kinase 1; UVRAG, ultraviolent irradiation resistance-​associated gene; VPS34, class III 
PI3K vacuolar protein sorting 34; WIPI2, WD repeat domain phosphoinositi de-​interacting protein 2; ZKSCAN3, zinc-​finger protein 
with KRAB and SCAN domains 3.

Table 1 (cont.) | Key autophagic factors and their regulation
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Certain transcription regulators were implicated 
in the regulation of autophagy in different systems: 
the epigenetic reader bromodomain-​containing pro-
tein 4 (BRD4) together with methyltransferase G9a 
were recently reported as repressors of a transcriptional 
programme of autophagic genes needed for autopha-
gosome biogenesis24, and the regulation of autophagy 
by FOXO (forkhead box O) proteins was demonstrated in 
cardiomyocytes25,26.

Several other regulators of autophagic proteins have 
been described in recent studies. Beclin 1 is inhibited by 
antiapoptotic molecule BCL-2 (ref.27) and is also the target 
of several kinases: phosphorylation by ULK1, MAPKAPK 
(mitogen-​activated protein kinase−activated protein 
kinase) 2 and 3, AMPK and DAPK (death-​associated pro-
tein kinase) promotes autophagy, whereas AKT and EGFR 
(epidermal growth factor receptor) inhibit autophagy 
through Beclin 1 inactivation. PI3KC3–C1 is further 

FOXO (forkhead box O) 
proteins
Family of transcription factors 
activated in response to cell 
stress; they regulate genes 
involved in cellular energy 
production, oxidative stress 
resistance, cell viability and 
proliferation.

Box 1 | Cargo selection for selective autophagy

Whereas starvation triggers bulk autophagy that nonspecifically engulfs any cytoplasmic material, certain signals or 
cellular events can evoke highly selective autophagic targeting of distinct cellular structures, such as damaged 
mitochondria (mitophagy), invading bacteria (xenophagy), aggregated proteins (aggrephagy) and others. Selective 
autophagy requires the labelling of cargo with ‘eat-​me’ signals (most prominently ubiquitin (Ub) chains) recognized by 
autophagy receptors that link the cargo to the autophagic membrane via their light chain 3 (LC3)-interacting region (LIR). 
In selective autophagy, ULK1 is activated in an mTOR-​independent manner that still awaits characterization. A recent 
report has implicated huntingtin (HTT), the protein product of the gene mutated in Huntington disease, as a possible 
molecular link between autophagic cargo and activation of ULK1171. In that study, HTT was shown to compete with mTOR 
complex 1 (mTORC1) for binding to ULK1, thus freeing ULK1 from mTORC1-mediated inhibition. HTT may also facilitate 
the interaction of the autophagy receptor sequestosome 1 (p62) with LC3 and K63-linked Ub chains, thereby coupling 
cargo recognition and activation of selective autophagy.

A well-​studied targets of selective autophagy are mitochondria, which can be removed via different mechanisms 
depending on the physiological context. Upon damage or depolarization, the mitochondrial kinase PTEN-​induced kinase 1  
(PINK1) becomes stabilized and recruits the Ub E3 protein ligase Parkin (see figure part a). PINK1 and Parkin cooperate in 
a feedforward mechanism to assemble phosphorylated Ub (pUb) chains on several proteins of the outer mitochondrial 
membrane, which in turn recruit cargo receptors such as optineurin (OPTN), calcium-​binding and coiled-​coil domain-​
containing protein 2 (NDP52) and p62. In this process, PINK1 phosphorylates free Ub, polyUb attached by Parkin to the 
mitochondrial surface and the ubiquitin-​like (UBl) domain of Parkin. These phosphorylation events enhance both the 
ubiquitin ligase activity of Parkin and its retention time on damaged mitochondria. Another player in mitophagy is TANK-​
binding kinase 1 (TBK1), which promotes coupling of the cargo to the phagophore by phosphorylating Ub-​binding 
domains and LIRs of several cargo receptors, thereby increasing their affinity for pUb and LC3, respectively. Notably, 
mitophagy can also occur in a Ub-​independent manner via mitochondrial proteins such as BCL2/adenovirus E1B 19 kDa 
protein-​interacting protein 3-like (NIX), FUN14 domain-​containing protein 1 (FUNDC1) and BCL2/adenovirus E1B 19 kDa 
protein-​interacting protein 3 (BNIP3), which possess an LC3-interacting region (LIR) and therefore function as direct 
cargo receptors (see figure part b). They are typically regulated by stress-​dependent phosphorylation. Finally, lipids, 
including phospholipids, such as cardiolipin172 and ceramide173, have been shown to mediate mitophagy (see figure part c).  
In neuronal cells, cardiolipin is located at the inner membrane of healthy mitochondria, but upon mitochondrial damage, 
it is externalized and presented on the mitochondrial surface, where it is recognized by LC3.
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GABARAP, γ-​aminobutyric acid receptor-​associated protein; UBD, ubiquitin D.
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regulated by interaction with AMBRA1 (activating mol-
ecule in BECN1-regulated autophagy protein 1), which 
promotes autophagy28, whereby ULK1-phosphorylated 
AMBRA1 is released from microtubules to allow Beclin 1  
binding and consequent PI3KC3–C1 activation29. In 
chondrocytes, fibroblast growth factor 18 (FGF18) and its 
receptor FGFR4 activate the VPS34–Beclin 1 complex in a 
JNK-​dependent manner to initiate autophagy30. Progestin 
and adipoQ receptor family member 3 (PAQR3), a Golgi 
complex-​localized multipass transmembrane protein, 
was found to shift the balance towards PI3KC3 associa-
tion with ATG14 instead of with UVRAG upon glucose 
starvation and thereby increase autophagy31. Finally, it 
has been recently reported that autophagy in livers of 
fasting mice is regulated by acetylation of VPS34, which 
is mediated by the histone acetyltransferase p300 (ref.32).

The mechanistic determinant for recruitment of 
ULK1 to the PAS is largely unclear. In a recent study, 
the Golgi-​localized WW domain-​containing adap-
tor with coiled coil (WAC) was identified as a positive 
regulator of autophagy33. In a subsequent study, WAC 
was found to mediate translocation of GABARAP — a 
factor that mediates phagophore expansion — from the 
Golgi complex to the centrosome34. It was proposed that 
centrosomal GABARAP is then trafficked (possibly via 
microtubules) to the phagophore, where it recruits and 
activates the ULK1 complex. This centrosomal pool 
of GABARAP might support sustained activation of 
the ULK1 complex during autophagosome formation. 
PI3KC3–C1 is targeted to the PAS by ATG14 (refs35,36) 
possibly through phosphorylation by ULK1 and 
consequent interaction with ATG1337, while ATG14 is 
regulated by interaction with type Iγ PI-​phosphate 
5-kinase (PIPKIγi5), an enzyme that generates phos-
phatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)38. 
Recruitment of ATG9 is regulated by the ULK1 com-
plex10,39 and by transport protein particle complex III  
(TRAPPIII), an activator of the ER-​to-Golgi complex 
trafficking factor Ras-​related protein RAB1 (also known 
as RAB1A)40,41. Moreover, guanine nucleotide exchange 
C9ORF72, a protein that is mutated in patients with 
amyotrophic lateral sclerosis (ALS) or with frontotempo-
ral dementia, was recently shown to interact with ULK1 
and RAB1 (ref.42), suggesting that RAB1 coordinates 
ATG9 recruitment with the activity of ULK1.

Of note, phagophore nucleation (and possibly 
expansion) probably also involves actin scaffolding, 
as autophagosome formation is promoted by  
F-​actin-capping protein CapZ43 and WASP homologue-​
associated protein with actin, membranes and 
microtubules (WHAMM) recruited to the PAS by PI3P 
and by actin nucleation-​promoting factor junction-​
mediating and -regulatory protein (JMY), which is 
targeted to the phagophore via its LC3-interacting region 
(LIR; see also below)44.

Phagophore expansion. The ATGs most prominently 
implicated in phagophore expansion are the Ub-​like 
ATG8 family members45. Nascent pro-​ATG8s are 
processed at their C-​termini by the cysteine protease 
ATG4, exposing a glycine residue that is essential for 
their conjugation to PE45. The specificity of the four 

distinct ATG4 isoforms is not fully characterized, 
but ATG4B has been shown to recognize all ATG8s, 
whereas ATG4A is more specific to GABARAPs46,47. 
The processed ATG8s are activated by the E1-like 
enzyme ATG7 and conjugated to membrane-​associated 
PE by the activity of ATG3, thereby converting it from 
a freely diffuse form (for LC3 this form is known as 
LC3-I)into a membrane-​anchored, lipidated form (for 
LC3 referred to as LC3-II)8. For efficient PE conju-
gation in vivo, ATG3 requires stimulation by E3-like 
activity of the ATG12~ATG5 conjugate, formed by acti-
vation of ATG12 by ATG7 and conjugation to ATG5 
by E2-like ATG10 (ref.8). The activity of ATG12~ATG5 
is localized to the PAS by interaction with ATG16L in 
a dimeric ATG12~ATG5–ATG16L complex48,49 that is 
recruited to the PAS through interaction of ATG16L1 
with WIPI2 (ref.50). ATG16L1 can form homo-​
oligomers through a coiled-​coil domain, which may 
allow ATG16L1 to crosslink multiple ATG12~ATG5 
conjugates into a single large protein complex that pos-
sibly serves to scaffold the phagophore51. Conjugation 
of ATG8s to PE promotes phagophore expansion (and 
possibly also sealing)52. This conjugation event is sug-
gested to occur on ER exit sites following starvation-​
induced and FIP200-mediated relocation of ER exit 
factor prolactin regulatory element-​binding protein 
(SEC12) to the ER–Golgi intermediate compartment 
(ERGIC)53,54 — in line with the observations that pha-
gophores form in apposition to ER exit sites55. Notably, 
this view has been recently challenged by studies indi-
cating that autophagosomes can form without the 
conjugation machinery56 or even in the absence of all 
ATG8s57. Aside from their contribution to phagophore 
expansion, phagophore-​anchored ATG8s also facili-
tate cargo recruitment in selective autophagy, as they 
interact with LIRs of cargo receptors (which themselves 
recognize the cargo through ‘eat-​me’ signals, such as Ub 
or galectins (Box 1)).

Apart from C-​terminal processing of nascent ATG8s, 
ATG4 is also capable of deconjugating ATG8s from PE 
to release it from the membrane and limit phagophore 
expansion. Both activities of ATG4 are required for the 
normal progression of autophagy. As the autophagic 
activities of ATG8s are attributed to their conjugation 
to PE, it was originally postulated that ATG4 deconju-
gating activity must be tightly regulated both in time and 
in space58. Accordingly, in order to function properly on 
the autophagic membrane, lipidated ATG8s should be 
protected from ATG4 (refs58–60). This may be regulated 
by mitochondria-​generated reactive oxygen species 
(ROS)58, in line with the suggestion that phagophores 
form preferentially at ER−mitochondria contact sites. 
Alternatively, ATG8s might be protected from deconju-
gation by inhibition of ATG4 through phosphorylation 
by ULK1 (refs59,60).

Targeting of ATG8s to autophagic membranes 
can also be regulated by additional post-​translational 
modifications. For example, phosphorylation of 
LC3 by protein kinase A (PKA) negatively regulates 
its autophagic activity61. Finally, autophagosomal 
size is also controlled by the AMPK-​related kinases 
NUAK family SNF1-like kinase 2 (NUAK2) and  

JNK
Member of the MAPK family 
activated by extracellular 
signals; associated with several 
pathological conditions, 
including neurodegenerative 
diseases, inflammation and 
cancer.

E1
Ubiquitin (Ub)-activating 
enzyme; first enzyme in the 
E1–E2–E3 ubiquitylation 
cascade that activates Ub in an 
ATP-​dependent manner.

E3
Ubiquitin (Ub)-ligating enzyme; 
cooperates with E2 to attach 
Ub to a lysine residue in the 
target protein. Only 
component of the Ub 
machinery that interacts with 
the target, thus conferring 
substrate specificity to the 
reaction.

E2
Ubiquitin (Ub)-conjugating 
enzyme; takes over activated 
Ub from E1 and hands it over 
to E3. Plays a key role in 
defining the linkage type of Ub 
conjugation when chains of 
multiple Ub molecules are 
assembled.

ER exit sites
Areas of the endoplasmic 
reticulum (ER) where transport 
vesicles that contain lipids and 
proteins made in the ER detach 
from the ER and move to the 
Golgi complex.

Galectins
Carbohydrate-​binding lectins 
that recognize intracellular 
bacteria-​containing vesicles 
when their membrane integrity 
is compromised.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

www.nature.com/nrm

R e v i e w s

354 | JUNE 2018 | volume 19	



serine/threonine-​protein kinase BRSK2 through ATG2 
and WIPI4 (ref.22). Accordingly, WIPI molecules func-
tion as PtdIns3P effectors at the nascent autophagosome, 
acting as scaffold molecules with distinct interactions 
to different autophagic factors50. WIPI4 interacts with 
ATG2 to regulate autophagosome formation by an as yet 
unclear mechanism22.

Autophagosome maturation. Following expansion 
and sealing of the phagophore, the autophagosome 
undergoes maturation, which involves gradual clear-
ance of ATGs from the nascent autophagosome outer 
membrane and recruitment of machinery responsi-
ble for lysosomal delivery (microtubule-​based kine-
sin motors) and machinery that mediates fusion 
with the lysosome, encompassing SNAREs: syntaxin 
17 (STX17) and synaptosomal-​associated protein 
29 (SNAP29), on the autophagosome and vesicle-​
associated membrane protein 8 (VAMP8), on the 
lysosome62,63, and the homotypic fusion and protein 
sorting (HOPS) complex, which mediates membrane 
tethering to support SNARE-​mediated fusion. These 
processes all occur in a poorly characterized and prob-
ably coordinated manner that is slowly emerging64 
(see also ref.65 for review).

ATG8s drive maturation by linking the autopha-
gosome to kinesins through autophagy-​specific kine-
sin adaptors such as FYCO1 (FYVE and coiled-​coil 
domain-​containing protein 1)66. ATG8s also recruit —  
via pleckstrin homology domain-​containing family M 
member 1 (PLEKHM1) — the HOPS complex to the 
autophagosome67. Recruitment of the HOPS complex 
to the autophagosome was also proposed to be medi-
ated by UVRAG, which is negatively regulated by 
mTORC1 (ref.68), thus potentially broadening the range 
of mTORC1 activities to late events along the autophagic 
process. However, a later study suggested an indirect role 
for UVRAG in autophagy that is secondary to its role in 
late stages of endocytic degradation69.

There is now evidence that post-​translational modifi-
cations of ATG8s further regulate autophagosome matu-
ration, as the phosphorylation of LC3 on residue Thr50 
by the Ste20 Hippo kinase orthologues serine/threonine-​
protein kinase 3 (STK3) and STK4 was recently found 
to be essential for autophagosome–lysosome fusion and 
for clearance of intracellular bacteria by autophagy70. 
Interestingly, the phagophore nucleation factor ATG14 
was recently implicated in autophagosome matura-
tion as well. ATG14 was shown to be recruited to the 
autophagosomal outer membrane by interaction with 
STX17 and to promote membrane tethering to enhance 
SNARE-​mediated fusion63.

Medical implications
Extensive research over the past two decades has not 
only established a central role for autophagy in cellular 
homeostasis but also unravelled molecular links to var-
ious disease conditions (Table 2). Chemical or genetic 
disturbance of autophagy and the age-​dependent decline 
in autophagic activity have been implicated in the 
progression of cancer, neurodegeneration and immune 
diseases, as well as ageing 71.

Complex roles of autophagy in cancer development 
and progression. Autophagy is an important process 
during cancer progression, but the exact roles of auto-
phagy in cancer cells are strongly context-​dependent 
(Fig. 2a). Its cytoprotective function is believed to have 
tumour-​suppressive potential before the onset of tum-
origenesis, and loss of autophagy has been associated 
with increased risk of cancer72. However, autophagy has 
also been shown to allow premalignant cells to escape 
genotoxic stress and inflammation that promote tum-
origenesis. There is good evidence, moreover, that auto-
phagy provides cancer cells with metabolic plasticity, 
allowing them to thrive in suboptimal environments73 
and to exploit the prosurvival activity of autophagy to 
cope with therapy-​induced stresses74–76. Accordingly, 
many types of advanced cancers exhibit high autophagic 
activity77, and it was proposed that certain tumours, such 
as pancreatic cancer78–80 or cancers with mutant RAS 
(rat sarcoma) genes81, are highly dependent on auto-
phagy. Interestingly, it has been revealed that autophagy 
induction is a side effect of many cancer therapies82, and 
thus, pharmacological inhibition of autophagy has been 
proposed as a valid strategy to enhance the efficacy of 
therapies and to avoid resistance to treatment in cer-
tain cancers81,83,84 (Table 2). Notably, some reports also 
highlight a beneficial role for autophagy activation in 
cancer therapies involving the induction of immuno-
genic cell death. In this context, autophagy-​competent 
dying tumour cells actively release ATP85–87 and the 
high-​mobility group box 1 protein B1 (HMGB1)88,89, which 
recruit immune effectors into the tumour bed to trigger 
a tumour-​specific immune response. Thus, activation of 
autophagy rather than its inhibition could be considered 
as a strategy to boost the efficacy of cancer therapy83. In 
accordance with this notion, caloric restriction (which 
promotes autophagy by inactivation of mTORC1) was 
found to enhance tumour immunosurveillance but 
had this effect only in the case of autophagy-​proficient 
tumours90. In order to therapeutically exploit these find-
ings, it will be necessary to identify chemotherapy and/or 
radiotherapy regimens that trigger an optimal tumour-​
targeting immune response as well as to define the types 
of cancer that are sensitive to this treatment strategy. The 
genetic context was also shown to be important for deter-
mining the role of autophagy in cancer. For example, in a 
mouse model of pancreatic ductal adenocarcinoma, the 
loss of autophagy prevents the formation of high-​grade 
pancreatic intraepithelial neoplasias in the presence of 
p53, whereas in the absence of p53, autophagy inhibition 
accelerates tumour growth91. Thus, autophagy seems to 
be a double-​edged sword in the context of cancer ther-
apies, and it remains to be established whether it can 
be successfully targeted — inhibited or induced — for 
therapeutic benefit.

The emerging notion that autophagy can shape the 
tumour microenvironment is further corroborated by 
the fact that autophagy can facilitate polarized sorting 
and unconventional secretion of certain cytosolic pro-
teins92,93. Indeed, oncogenic RAS-​driven invasion was 
shown to be dependent on autophagy-​mediated secre-
tion of multiple factors, including the pro-​migratory 
cytokine interleukin 6 (IL-6) and WNT5a, which are 

SNAREs
Proteins that mediate the 
fusion of vesicles with target 
membranes. SNARE proteins 
on the vesicle (v-​SNAREs) and 
on the target membrane (t-​
SNAREs) combine to form a 
trans-​SNARE complex that 
provides the force for 
membrane fusion.

Hippo kinase
A kinase that functions as a 
central node in the regulation 
of cell division and controls 
organ size in flies and 
mammals as well as the growth 
of cancer cells.

High-​mobility group box 1 
protein (HMGB1)
A protein that senses and 
coordinates the cellular stress 
response acting as a DNA 
chaperone, autophagy 
sustainer and protector from 
apoptotic cell death. Outside 
the cell, it functions as a 
prototypic damage associated 
molecular pattern molecule 
(DAMP).

Unconventional secretion
Comprises the translocation 
across the plasma membrane 
of cargo without a signal 
peptide or a transmembrane 
domain and cargos that reach 
the plasma membrane by 
bypassing the Golgi apparatus 
despite entering the 
endoplasmic reticulum (ER).
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Table 2 | Human diseases linked to autophagy and clinical translation

Disease Mechanism Compounds

Autophagy activation in neurodegenerative diseases

Alzheimer disease mTOR inhibition (via 5-HT6R activation) AVN-211; Lu AE58054 (idalopirdine); SB-742457

Inhibition of AKT–mTOR pathway rAAV/Aβ vaccine

ACAT1 inhibition F12511

mTOR inhibition Rapamycin, latrepirdine and metformin

AMPK activation Resveratrol and resveratrol-​like small molecules

Lysosomal acidification Nicotinamide

GSK3β and IMPase inhibition Lithium

Unclear mechanism Berberine

MTMR14 (autophagy inhibitor) inhibition AUTEN-67

Parkinson disease NRF2 activation DMF

TFEB activation Curcumin analogue

Beclin 1 complex activation BECN1 gene transfer

TFEB regulation TFEB gene

Beclin 1 activation Dual GLP-1–GIP receptor agonists

ALS Unclear mechanism Berberine

Huntington disease MTMR14 inhibition AUTEN-67

mTOR inhibition Rapamycin

Unclear mechanism Berberine

Calpain inhibition Calpastatin

Unknown Rilmenidine

Unknown Trehalose

mTOR activation Constitutively active RHEB gene product

Interventions involving autophagy inhibition in cancer

Breast cancer Autophagy inhibition + microtubule inhibition CQ + taxols

Autophagy inhibition CQ

Prostate cancer Autophagy inhibition + BCL-2 inhibitor + antiandrogen HCQ + ABT-263 + abiraterone

Autophagy inhibition HCQ

Autophagy inhibition + androgen receptor inhibition Metformin hydrochloride + enzalutamide

Pancreatic cancer Autophagy inhibition + inhibition of DNA synthesis CQ + gemcitabine

Autophagy inhibition + inhibition of DNA synthesis + microtubule 
inhibition

HCQ + gemcitabine + abraxane

Autophagy inhibition + inhibition of DNA synthesis HCQ + gemcitabine

Autophagy inhibition CQ

Small-​cell lung cancer Autophagy inhibition CQ

Autophagy inhibition + DNA damage CQ + radiotherapy

Non-​small-cell lung cancer Autophagy inhibition + microtubule inhibition + DNA 
damage + inhibition of angiogenesis

HCQ + paclitaxel + carboplatin + bevacizumab

Melanoma Autophagy inhibition + DNA damage + DNA repair inhibitor CQ + radiation + DT01

Autophagy inhibition + MEK inhibition HCQ + trametinib

AKT–mTOR signalling Curcumin

Colorectal cancer Autophagy inhibition + alkylation + DNA damage + inhibition of 
angiogenesis

HCQ + oxaliplatin + 5-FU + bevacizumab

Autophagy inhibition + inhibition of angiogenesis + alkylation 
and antimetabolite

HCQ + bevacizumab + XELOX

Autophagy inhibition + HDAC inhibitor HCQ + vorinostat

Renal cell carcinoma Autophagy inhibition + mTOR inhibitor HCQ + RAD001
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normally secreted via the conventional pathway94. In 
addition, recent findings point to a close relationship 
between autophagy and the biogenesis and secretion 
of exosomes95,96. Exosomes transfer lipids, proteins, 
mRNAs, non-​coding RNAs and even DNA out of cells 
and have been shown to promote tumour growth, alter 
the tumour microenvironment, facilitate cancer cell dis-
semination, modulate immune responses and mediate 
resistance to therapy97.

To acquire metastatic potential, adherent cancer cells 
need to gain motility, which is achieved through epi-
thelial−mesenchymal transition (EMT). Intriguingly, 
signals that trigger EMT, such as hypoxia or transform-
ing growth factor-​β (TGFβ), also activate autophagy 
pathways98. Yet, as activation of autophagy was shown 
to cause downregulation of major transcription fac-
tors of the EMT process, autophagy seems to inhibit 
rather than support EMT in most types of cancer99–101. 
Moreover, cadherin 6, which specifically marks cells 
undergoing EMT and actively drives the EMT pro-
cess, downregulates autophagy by directly interacting 
with and blocking the functions of several autophagic 
proteins102, suggesting that autophagy activation is not 
favoured during EMT itself.

A feature closely linked to EMT is anoikis, a spe-
cific form of apoptotic cell death that results from the 
prolonged detachment of cells from the extracellu-
lar matrix (ECM) and is mediated by BCL-2 protein 
family members, including Bcl-2 modifying factor 
(BMF) and Bcl-2-like protein 11 extra-​long isoform 
(BIM-​EL). Anoikis represents a critical challenge to 

metastasizing tumour cells. However, autophagy acti-
vated upon loss of ECM−integrin receptor engagement 
can promote resistance to anoikis in several tumour 
models, possibly by alleviating metabolic deficiencies 
in ECM-​detached cells98,103,104. Intracellular signals gov-
erning this process remain poorly defined but might 
involve the integration of multiple pathways, includ-
ing those that activate autophagy upon accumula-
tion of ROS105, glucose starvation, ER stress signalling  
via the PERK pathway106,107 and activation of the IKK 
(IκB kinase) complex108, which is a central activator of 
the NF-​κB (nuclear factor-​κB) pathway. Moreover, emerg-
ing evidence points to direct, negative regulation of the 
autophagy factor Beclin 1 by the proapoptotic factors 
BIM-​EL and BMF: the interaction of BIM-​EL with 
Beclin 1 was shown to inhibit autophagosome formation 
by sequestering Beclin 1 to microtubules, whereas BMF 
was reported to stabilize the inhibitory Beclin 1–BCL-2 
protein complex109–111. However, the exact mechanisms 
and the pathophysiological consequences of this cross-
talk between autophagy and anoikis are not yet fully 
understood.

Besides preventing anoikis, the ECM contact also 
has a major role in cancer cell migration. Cells bind 
to the ECM through large protein complexes called  
focal adhesions. In order for cells to migrate, their focal  
adhesions need to be taken apart and then recon-
structed in a coordinated fashion. Autophagy 
contributes to focal adhesion remodelling by con-
trolling the turnover of key components of focal 
adhesions, including paxillin, vinculin, zyxin and 

Exosomes
Small extracellular vesicles that 
contain various molecular 
constituents and are released 
directly from the plasma 
membrane or when 
multivesicular bodies fuse with 
the plasma membrane.

NF-​κB (nuclear factor-​κB) 
pathway
A transcription factor that 
controls cytokine production 
and cell survival and plays a 
key role in the cellular 
response to infection. 
Disturbance of the pathway 
has been linked to cancer, 
inflammatory and autoimmune 
diseases, septic shock, viral 
infection and improper 
immune development.

Disease Mechanism Compounds

Interventions involving autophagy inhibition in cancer (cont.)

Solid tumours Autophagy inhibition + HDAC inhibitor HCQ + vorinostat

Autophagy inhibition + DNA damage CQ + carboplatin and/or gemcitabine

Multiple myeloma Autophagy inhibition + proteasome inhibition + alkylation CQ + velcade + vyclophosphamide

Glioblastoma Autophagy inhibition + DNA damage and/or alkylation CQ + chemoradiation with temozolomide

Interventions involving autophagy activation in cancer and cancer-​related phenotypes

Adenocarcinoma bone 
metastasis

p53-dependent autophagy induction Fluvastatin (HMG-​CoA reductase inhibitor)

Hepatocellular carcinoma AMPK activation Palbociclib

Inclusion body myositis mTOR inhibition Rapamycin

Desmoid-​type fibromatosis mTOR inhibition Rapamycin

Advanced cancers mTOR inhibition + HDAC6 inhibition + autophagy inhibition Rapamycin + vorinostat + HCQ

Other interventions

Infection AMPK-​mediated autophagy activation Ohmyungsamycins

Autophagy activation by mTOR inhibition Statin, gefitinib and carbamazepine

Autophagy activation TAT-​Beclin1

Diabetes SIRT1 upregulation Resveratrol

For references, see Supplementary Table 1. 5-FU, 5-fluorouracil; 5-HT6R , 5-hydroxytryptamine 6 receptor ; ACAT1, acyl-​CoA:cholesterol acyltransferase 1; ALS, 
amyotrophic lateral sclerosis; AMPK , 5′ AMP-​activated protein kinase; BECN1, Beclin 1; CQ, chloroquine; DMF, dimethyl fumarate; DT01, DNA repair inhibitor ; 
GLP-1/GIP, glucagon-​like peptide 1/glucose-​dependent insulinotropic polypeptide; GSK3β, glycogen synthase kinase-3β; HCQ, hydroxychloroquine; HDAC, 
histone deacetylase; HMG-​CoA , 3-hydroxy-3-methylglutaryl-​CoA ; IMPase, inositol monophosphatase; MTMR14, myotubularin-​related protein 14; NRF2, nuclear 
factor erythroid 2-related factor 2; RAD001, 40-O-(2-hydroxyethyl) derivative of sirolimus; rAAV/Aβ, recombinant adeno-​associated viral vector/amyloid-​b; SIRT1, 
NAD-​dependent protein deacetylase sirtuin-1; TAT, transactivator of transcription peptide derived from a region of Beclin 1, which binds HIV-1 Nef; TFEB, 
transcription factor EB.

Table 2 (cont.) | Human diseases linked to autophagy and clinical translation
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Fig. 2 | Autophagy in cancer. a | Autophagy impacts several aspects of cancer progression. High autophagic activity is 
believed to be cytoprotective and to suppress cancer initiation. However, in the primary tumours (after successful 
initiation), autophagy is often upregulated to overcome stresses resulting from fast growth (such as protein stress) as well 
as low nutrient availability (starvation) inside the tumour mass. Other cellular processes are associated with cancer 
progression and spreading crosstalk with the autophagy pathway. The upregulation of autophagy during epithelial–
mesenchymal transition (EMT) appears to have an inhibitory effect on EMT, as several EMT-​promoting transcription factors 
are downregulated in an autophagy-​dependent manner. In contrast, another process that is required for cancer cells to 
gain migratory capacity and spread, anoikis resistance, is promoted by upregulation of autophagy in many cancers, yet the 
underlying mechanisms are unclear. Cell migration can be both promoted by autophagy (turnover of focal adhesions) and 
inhibited (autophagic degradation of actin dynamics regulator transforming protein RHOA); see also part b. On one hand, 
cancer therapies can induce autophagy , which contributes to the development of resistance. On the other hand, 
autophagy was reported to be required for immunogenic cancer cell death and was suggested to be antitumorigenic.  
b | Autophagy regulates cell migration in at least two opposing ways: on one hand, autophagy directly degrades active 
(GTP-​bound) RHOA and the RHOA guanine nucleotide exchange factor (GEF) H1 in a ubiquitylation-​dependent manner 
mediated by recognition through autophagy receptor sequestosome 1 (p62). This impacts actin dynamics, thus inhibiting 
cell migration and other RHOA-​dependent cellular processes. Interestingly , autophagic RHOA degradation also 
contributes to anoikis resistance. Intriguingly , RHOA has been shown to inhibit signalling upstream of mTORC1, thus 
stimulating autophagy in a potential negative feedback loop. On the other hand, autophagy mediates the disassembly of 
focal adhesions by degrading several focal adhesion components, thus contributing to increased cell migration. ECM, 
extracellular matrix; FAK , focal adhesion kinase; mTORC1, mTOR complex 1; Ub, ubiquitin.
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focal adhesion kinase (FAK), and loss of autophagy 
inhibits migration and focal adhesion turnover at 
the leading edge112,113 (Fig. 2b). Moreover, autophagy 
has been shown to directly target and degrade 
active transforming protein RHOA114 as well as the 
RHOA–guanine nucleotide exchange factor (GEF) 
H1 (ref.115), which are crucial regulators of actin 
dynamics and cell migration. Remarkably, RHOA 
has also been implicated in mediating anoikis 
through cytoskeletal tension-​dependent cell death 
in unattached cells116. Thus, RHOA degradation 
could be one way by which autophagy contributes 
to anoikis resistance. Importantly, in other contexts, 
autophagy-​mediated RHOA degradation may inhibit 
cell migration as well as other RHOA-​dependent 
events, including cell division, leading to cytokine-
sis failure or aneuploidy114. Intriguingly, RHOA can 
repress signalling through mTORC1, thus enhancing 
autophagy117, further highlighting the complex inter-
play between cell–ECM attachment, cell migration 
and autophagy.

Taken together, autophagy can both suppress 
and promote cancer progression and metastasis at 
several stages. This complicates therapeutic inter-
vention (Box  2) and makes it necessary to evalu-
ate the type of tumour cell, its genetic background, 
the stage of tumour progression and the tumour 
microenvironment in order to achieve the desired 
effect of autophagy modulation and avoid potential 
aggravation of the disease.

Autophagy against neurodegenerative diseases. 
Among the hallmarks of neurodegenerative diseases 
(including Alzheimer disease, Parkinson disease, 
Huntington disease, ALS, Vici118, hereditary spastic 
paraplegia119, static encephalopathy of childhood with 
neurodegeneration in adulthood (SENDA)120 and oth-
ers) are aggregates of misfolded or unfolded proteins 
that accumulate inside neuronal cells, eventually caus-
ing severe disturbances in their function and/or their 
death (Fig. 3).

In healthy cells, proteins that are not properly folded 
are tagged with Ub and degraded by the proteasome121. 
However, proteasomal activity is prone to impairment 
by various internal and external stresses and declines 
with age. If the degradative capacity of the proteasome 
is overloaded, the autophagy system becomes activated 
to remove accumulating aggregates as well as organelles 
that are irreparably damaged by aggregated and non-
functional proteins121. Indeed, the most common cause 
of death of autophagy-​deficient animals is neurode-
generation accompanied by the accumulation of ubi
quitylated protein aggregates122,123. Moreover, numerous 
proteins that are mutated in neurodegenerative diseases 
have been implicated in autophagy124,125 or in lysosomal 
function126, and transcriptome studies using samples 
from patients revealed alterations in autophagy-​related 
signalling127–129. The autophagic cargo receptor seques-
tosome 1 (p62), which binds Ub, has a key role in the 
clearance of protein aggregates, and post-​mortem analy
sis of p62-positive inclusions is a defining diagnostic 

Leading edge
Front edge of a cell that is 
pushed forward by rapid actin 
polymerization.

Box 2 | Autophagy as a pharmacological target

The first US Food and Drug Administration (FDA)-approved agent 
capable of inhibiting autophagy was chloroquine, a drug previously used 
to treat malaria and arthritis, which also blocks autophagy by disrupting 
lysosome acidification174. Now, multiple targets within the pathway have 
been or are being evaluated for pharmacological intervention of 
autophagy (Table 2), including mTOR, serine/threonine protein kinases 
ULK1 and ULK2175,176, vacuolar protein sorting 34 (VPS34)177–179, and 
interactions within the Beclin 1 complex180, the E1-like enzyme 
autophagy-​related protein 7 (ATG7)181 and ATG4B — the protease that 
processes pro-​LC3 (light chain 3)182.

The most thoroughly tested inducer of autophagy is rapamycin, which 
inhibits mTOR complex 1 (mTORC1) in mouse and fly models of various 
neurodegenerative diseases. However, considerable side effects on 
cellular pathways other than autophagy precluded its therapeutic use in 
humans183. Additionally, natural (often dietary) compounds, including 
resveratrol, polyphenols, berberine, artemisinin, sesamol, trehalose or 
spermidine, have moved into the focus of pharmacologists, yet 
knowledge of the mechanisms of action and potential side effects of 
these substances is currently incomplete184–192. Notably, in addition to 
pharmacological interventions, caloric restriction and exercise were also 
shown to induce autophagy and to contribute to protection against 
diabetes in mice193, and the effect of alternate-​day fasting on human 
metabolism and autophagy is currently being tested in a phase I clinical 
trial (NCT02673515).

In most cancer therapies, inhibition of autophagy is combined with 
other therapeutic interventions, including radiation, chemotherapies and 
targeted agents, including DNA-​damaging agents, histone deacetylase 
(HDAC) inhibitors, proteasome inhibitors, mitotic inhibitors, 
antiandrogens and kinase inhibitors194,195. Unfortunately, although some 
reports indicated that autophagy inhibition might increase 
chemosensitization and may overcome acquired resistance to other 

anticancer agents, multiple clinical trials testing the efficacy of autophagy 
inhibition in cancer patients have been largely disappointing and have 
served to underline the vast complexity of networks in which autophagy is 
embedded. As the crosstalk between autophagy pathways and other 
cellular systems is usually reciprocal, modulation of autophagy activity 
not only affects the efficacy of protein aggregate clearance or the 
elimination of damaged organelles but also likely impacts the magnitude 
or duration of other fundamental cellular pathways, such as NF-​kB 
signalling, cell migration or cell death programmes. Finally, autophagy 
regulation in the tumour stroma and in tumour cells may differ: whereas 
inhibition of autophagy in tumour cells might trigger cell death, it could at 
the same time promote the release of survival factors in the tumour 
stroma (particularly fibroblasts and tumour-​infiltrating immune cells)196, 
thereby precluding a positive therapeutic outcome. Thus, decisions as to 
whether autophagy activity in a certain disease condition, particularly in 
cancer, should be upregulated or downregulated are not trivial and 
require careful evaluation of tumour type, stage and microenvironment.

Whereas targeting of autophagy in cancer turns out to be a delicate 
task, the consensus with respect to neurodegeneration is that autophagy 
activation protects against several neurodegenerative disorders197,198. 
Nevertheless, also in the context of neurodegeneration, therapeutic 
targeting of autophagy is challenging, and optimal dosage of inhibitors 
and timing of inhibition are crucial parameters for maximal therapeutic 
efficiency199. Indeed, as with cancer therapies, the specific targeting of 
autophagy without affecting other cellular processes is currently one of 
the major challenges in the field.

Lastly, several FDA-​approved drugs with proautophagy activity  
(see Table 2) have been shown to limit infection and inflammation in 
mouse models200,201, and the peptide TAT-​Beclin1 improved the outcome  
of chikungunya and West Nile virus infections in mice180. However, 
evaluations of human patients through clinical trials are still unavailable.
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marker in several neurodegenerative diseases130. p62 
participates in both aggregate formation by targeting 
misfolded aggregated proteins to the aggresome (a sin-
gle intracellular location in which misfolded proteins are 
sequestered to minimize potential cytotoxic effects)131 
and the subsequent sequestration of aggresomes by the 
phagophore132,133.

Besides potentially toxic protein aggregates, dys-
functional mitochondria have also been identified 
as a major cause of neurodegeneration. They pose a 
considerable threat to cells because they elevate cel-
lular ROS levels that might in turn damage both the 
proteome and the genome (Fig. 3). Therefore, to main-
tain mitochondrial homeostasis, cells separate damaged 
mitochondria from the mitochondrial network and 
remove them by selective autophagy (termed mito-
phagy) (see Box 1). Mitophagy is predominantly regu
lated by the PINK1 (PTEN-​induced kinase 1)–Parkin 
pathway, which is activated upon depolarization of 
the mitochondrial membrane potential and involves a 
sophisticated interplay of PINK1-mediated phospho-
rylation and Parkin-​mediated ubiquitylation events 
on the outer mitochondrial membrane, resulting in 
recruitment of autophagic machinery and the selective 
sequestration of ubiquitylated mitochondria within 
autophagosomes134–136. Mutations in Parkin and PINK1 
are strongly associated with early-​onset Parkinson dis-
ease137. In addition to the PINK1–Parkin pathway, NIP-​
like protein X (NIX; also known as BNIP3L) can serve 
as an alternative mediator of mitophagy in neurons. 

Recent evidence suggests that NIX overexpression 
restores mitophagy and mitochondrial function in 
Parkin-​deficient or PINK1-deficient cell lines derived 
from patients with Parkinson disease138.

A number of studies have also uncovered a 
link between TANK-​binding kinase 1 (TBK1) and 
ALS139–142 as well as Parkinson disease143. TBK1 belongs 
to the IKK family of kinases involved in innate immu-
nity signalling pathways, but it also has a major role 
in autophagy and mitophagy. Through inducible phos-
phorylation of ubiquitylated cargo receptors (which, 
in addition to p62, include OPTN (optineurin) and 
NDP52 (calcium-​binding and coiled-​coil domain-​
containing protein 2; also known as CALCOCO2)), 
TBK1 enhances their affinity to Ub on the cargo, LC3 
on the autophagosome or both, thereby contribut-
ing to efficient recruitment of ubiquitylated cargo  
to autophagosomes136,144,145.

Taken together, in contrast to cancer where the 
function of autophagy is highly context depend-
ent, activation of autophagy is clearly beneficial for 
counteracting the mechanisms involved in neurode-
generative diseases, and currently, autophagy induction 
is being explored as a strategy for neurodegenerative 
disease prevention as well as for the treatment of 
advanced-​stage disease (Box 2; Table 2).

Autophagy in infection, inflammation and immunity.  
Autophagy has been implicated in a variety of immune  
functions, such as removal of intracellular bacteria146–148,  
inflammatory cytokine secretion149, control of inflam-
mation, antigen presentation150,151 and lymphocyte 
development152. The importance of autophagy for 
these functions is highlighted by the susceptibility 
of autophagy-​deficient animals to infection and the 
implication of autophagy defects in autoimmune dis-
eases, such as systemic lupus erythematosus, rheu-
matoid arthritis, psoriasis, diabetes and multiple 
sclerosis153,154. Autophagy also acts within tumour 
cells to modulate recruitment of and interaction 
with components of both the adaptive and innate  
immune systems155.

Mechanistically, autophagy extensively crosstalks 
with inflammatory signalling cascades, including 
multiple context-​specific and bidirectional interac-
tions with the IKK–NF-​κB pathway156,157. NF-​κB can 
induce autophagy by transactivating Beclin 1 (ref.158). 
Moreover, in the presence of various physiological 
and pharmacological stress signals, the IKK complex 
can induce autophagy156. Yet, the NF-​κB pathway may 
also inhibit autophagy, for example, in the context of 
tumour necrosis factor-​α (TNFα)-induced cell death159 
and in macrophages infected by Escherichia coli160. 
Reciprocally, in several cell lines, TNFα-​driven NF-​κB 
activation requires a functional autophagy pathway161. 
Autophagy can also suppress NF-​kB signalling by the 
autophagic degradation of active IKKβ, mediated either 
by KEAP1 (Kelch-​like ECH-​associated protein 1)162 or 
by the E3 ubiquitin-​protein ligase RO52 (also known  
as TRIM21)163.

In a process called xenophagy, autophagy also 
directly targets and eliminates invading bacteria such 

Cell survivalCell death
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Protein
aggregate

Autophagy receptor

Autophagy
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Lipidated
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Level of autophagy

Misfolded toxic
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Disturbances of
organellar and
cellular functions
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mitochondrion

Fig. 3 | Autophagy in neurodegeneration. Autophagy protects against 
neurodegeneration by eliminating two hallmarks of neurodegenerative diseases: 
defective mitochondria and toxic protein aggregates.  Damaged mitochondria  
produce high levels of reactive oxygen species (ROS) that pose a threat to many cellular 
components, including proteins, lipids and DNA. Protein aggregates, which are 
exacerbated by ROS-​mediated oxidative damage, compromise the function of 
organelles and are considered particularly toxic for neurons. Reduced autophagy 
activity (age-​related, pharmacologically or genetically caused) therefore increases the 
risk of neurodegenerative diseases. Accordingly, pharmacological stimulation of 
autophagy could be an effective therapeutic strategy against neurodegenerative 
diseases. LC3, light chain 3.
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as Mycobacteria164, Listeria, Salmonella, Legionella, 
Shigella, Listeria and group A streptococcus (see 
ref.147 for review). As soon as these bacteria enter the  
cytosol, they are labelled with various types of Ub 
chain and galectin and sequestered by autophagic 
membranes involving the same autophagic receptors 
(p62, NDP52 and others) that also engage endogenous 
selective autophagy substrates. The various types of  
Ub modification to the bacterial coat transform bacte-
rial surfaces into signalling platforms. For example, lin-
ear Ub chains not only attract the autophagic machinery 
but also locally activate NF-​kB signalling for a  
maximal antibacterial response165,166. Notably, many 
pathogens have evolved strategies to escape the  
autophagic machinery by secreting factors that interfere 
with autophagosome maturation167, blocking fusion of  
the autophagosome with the lysosome168 and com-
peting with host autophagy receptors for binding to 
LC3 (ref.169) and so on. Some bacteria even manipulate 
autophagy for their own benefit and are able to repli-
cate effectively within autophagosome-​like vesicles170. 
Nevertheless, autophagy activation is considered a valid 
therapeutic strategy to combat bacterial infections 
(Box 2; Table 2).

Conclusions and perspectives
Autophagy currently enjoys star status in cell biology. 
Initially described as a nonselective mechanism for intra-
cellular garbage disposal and recycling, autophagy has 
emerged as a highly selective and powerful programme 
that is critically implicated in various fundamental cellular 
processes. The cytoprotective properties of autophagy have 
raised the particular interest of scientists and clinicians. 
However, initial excitement about therapeutic targeting of 
autophagy in cancer and other diseases has given way to 
a sober, more realistic view of autophagy as a druggable 
process (Box 2). The uncovering of diverse and sometimes 
unexpected challenges demands an unbiased re-​evaluation 
of therapeutic strategies. The major task seems to be map-
ping the context-​dependent functional networks in which 
autophagy is embedded. The challenge is therefore to 
modulate autophagy without adversely affecting other 
cellular processes. The fact that autophagy crosstalks 
with virtually every other cellular system may give some 
idea of the vast scope of this task, yet it also indicates the 
enormous potential for beneficial modulation that we can 
expect to find while exploring this fundamental pathway.
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